START looking at PRFM not prp only, prp is the mere base… Its the fact that the PRP turns to PRFM that makes it all work guys… Your looking in not all the right places if you are focused on PRP alone as the basis of the Priapus shot its PRFM that is the real key…
Its activated PRP remember not just plain PRP, that realeases growth factors, if not activated or if no real source of actual injury the PRFM does not form… The fibrin matrix needs to be activated, and this can happen via various means, such as collegan in the skin, thrombrin, and or calcium chloride and most specificly site specific injury. The healing cascased otherwise does not take effect and activate. PRP must be properly activated to WORK, else its much less effective then PRFM.
By the way I thought I would report something I have found to be interesting… I recently tried another TB4 shot and wow it really really reminded me of the way I felt when I got the priapus shot, my erection responce went way up, I am more full, I have more libido, when I first take the shot I feel really strong desire and pressure to be with my wife and when I am the volume of my semen is more then ever. Anyway I say this about TB4 and it reminded me even more of PRP\PRFM… Much described here sounds just like the element involved in PRP\PRFM and plasma and wound healing, etc etc, its quite striking. And it was the effects TB4 had on me that reminded me of when I got my priapus shot that sparked me to look for this info and bam I found it on some site the gogle cached…. If you search that title you can find the site..
The nature of Tb4
Thymosin beta 4 is a small 43 amino acid protein (a peptide) that was originally identified in calf thymus, an organ that is central in the development of immunity. Tb4 was later found in all cells except red blood cells. It is highest in blood platelets that are the first to enter injured areas, in wound healing. Tb4 is also detected outside cells, in blood plasma and in wound and blister fluids.
Its unique potential as a healing substance lies in that it interacts with cellular actin and regulates its activity. Tb4 prevents actin from assembling (polymerizing) to form filaments but supplies a pool of actin monomers (unpolymerized actin) when a cell needs filaments for its activity. A cell cannot divide if actin is polymerized. Tb4 therefore serves in vivo to maintain a reservoir of unpolymerized actin that will be put to use when cells divide, move and differentiate.
Tb4 has other effects that are needed in healing and repair of damaged tissue. It is a chemo-attractant for cells, stimulates new blood vessel growth (angiogenesis), downregulates cytokines and reduces inflammation, thus protecting newly formed tissue from damaging inflammatory events. Tb4 has been shown to reduce free radical levels (with similar efficiency as superoxide dismutase), decrease lipid peroxidation, inhibit interleukin 1 and other cytokines, and decrease inflammatory thromboxane (TxB2) and prostaglandin (PGF2 alpha).
An effective healer, Tb4 can be administered topically on the surface of cells and systemically, through injection. Besides healing skin wounds, Tb4 has been shown to promote repair in the cornea of the eye, in rats, thus preventing loss of vision.
Wound healing
A critical step in wound healing is angiogenesis. New vessels are needed to supply nutrients and oxygen to the cells involved in repair, to remove toxic materials and debris of dead cells and generate optimal conditions for new tissue formation. Another important step is the directional migration of cells into the injured area, joining up to repair the wound. This requires an attractant that will direct the cells to the wound and propel them to the site. These critical steps in wound healing are regulated by beta 4, as seen in the following experiments.
Endothelial cells
Cells that line blood vessels (endothelial cells), taken from human umbilical chord veins, were grown in culture and the layer of cells subjected to a scratch wound. Cultures were then treated with Tb4 or kept in growth medium without Tb4. When examined four hours later, Tb4 treatment attracted cells to migrate into the wound and accelerated their movement, showing it is a chemoattractant. Cell migration was four to six times faster in the presence of Tb4 compared to the migration of untreated cells. Tb4 also hastened wound closure and increased the production of enzymes, called metalloproteases, that could pave the way for angiogenesis by breaking down barrier membranes and facilitating the invasion of new cells to the needy area, to form new vessels. Other experiments showed Tb4 acts in vivo. When endothelial cells were implanted under the skin in a gel supplemented with Tb4, the cells formed vessel-like structures containing red blood cells, indicating the ability to stimulate angiogenesis in the animals.
Skin repair
Thymosin beta 4 accelerated skin wound healing in a rat model of a full thickness wound where the epithelial layer was destroyed. When Tb4 was applied topically to the wound or injected into the animal, epithelial layer restoration in the wound was increased 42% by day four and 61% by day seven, after treatment, compared to untreated. Furthermore, Tb4 stimulated collagen deposition in the wound and angiogenesis. Tb4 accelerated keratinocyte migration, resulting in the wound contracting by more than 11%, compared to untreated wounds, to close the skin gap in the wound. An analysis of skin sections (histological observations) showed that the Tb4 treated wounds healed faster than the untreated. Proof of accelerated cell migration was also seen in vitro, where Tb4 increased keratinocyte migration two to three fold, within four to five hours after treatment, compared to untreated keratinocytes.