07-21-2003
"Infrared heat increases the extensibility of collagen tissues. Tissues heated to 45C (112F) and then stretched exhibit a nonelastic residual elongation of about 0.5 to 0.9 percent that persists after the stretch is removed. This does not occur in these same tissues when stretched at normal tissue temperature. Thus 20 stretching sessions can produce a 10 – 18% increase in length in tissues heated and stretched."
Deformation of tissue at a molecular level requires energy. Directional forces are employed in manual PE and many PEers also transfer heat to the penis as an additional energy input to facilitate the process.
Heat is the form of energy that is spontaneously transferred from a hotter object to a cooler one. Temperature can be thought of as the rate of molecular vibration. To deform a tissue, the molecules of which it is composed must be re-configured. This increase in vibration (raised temperature) assists in the extensibility of molecular structures such as collagen.
There are many different ways to transfer heat:
"Heat transfer mechanisms
As mentioned previously, heat tends to move from a high temperature region to a low temperature region. This heat transfer may occur by the mechanisms conduction and radiation. In engineering, the term convective heat transfer is used to describe the combined effects of conduction and fluid flow and is regarded as a third mechanism of heat transfer.
Conduction
Conduction is the most significant means of heat transfer in a solid. On a microscopic scale, conduction occurs as hot, rapidly moving or vibrating atoms and molecules interact with neighboring atoms and molecules, transferring some of their energy (heat) to these neighboring atoms. In insulators the heat flux is carried almost entirely by phonon vibrations.
The "electron fluid" of a conductive metallic solid conducts nearly all of the heat flux through the solid. Phonon flux is still present, but carries less than 1% of the energy. Electrons also conduct electric current through conductive solids, and the thermal and electrical conductivities of most metals have about the same ratio. A good electrical conductor, such as copper, usually also conducts heat well. The Peltier-Seebeck effect exhibits the propensity of electrons to conduct heat through an electrically conductive solid. Thermoelectricity is caused by the relationship between electrons, heat fluxes and electrical currents.
Convection
Convection is usually the dominant form of heat transfer in liquids and gases. This is a term used to characterize the combined effects of conduction and fluid flow. In convection, enthalpy transfer occurs by the movement of hot or cold portions of the fluid together with heat transfer by conduction. For example, when water is heated on a stove, hot water from the bottom of the pan rises, heating the water at the top of the pan. Two types of convection are commonly distinguished, free convection, in which gravity and buoyancy forces drive the fluid movement, and forced convection, where a fan, stirrer, or other means is used to move the fluid. Buoyant convection is because of the effects of gravity, and hence does not occur in microgravity environments.
Radiation
Radiation is the only form of heat transfer that can occur in the absence of any form of medium and as such is the only means of heat transfer through a vacuum. Thermal radiation is a direct result of the movements of atoms and molecules in a material. Since these atoms and molecules are composed of charged particles (protons and electrons), their movements result in the emission of electromagnetic radiation, which carries energy away from the surface. At the same time, the surface is constantly bombarded by radiation from the surroundings, resulting in the transfer of energy to the surface. Since the amount of emitted radiation increases with increasing temperature, a net transfer of energy from higher temperatures to lower temperatures results.
The frequencies of the emitted photons are described by the Planck distribution. A black body at higher temperature will emit photons having a distributional peak at a higher frequency than will a colder object, and their respective spectral peaks will be separated according to Wien’s displacement law. The photosphere of the Sun, at a temperature of approximately 6000 K, emits radiation principally in the visible portion of the spectrum. The solar radiation incident upon the earth’s atmosphere is largely passed through to the surface. The atmosphere is largely transparent in the visible spectrum. However, in the infrared spectrum that is characteristic of a blackbody at 300K, the temperature of the earth, the atmosphere is largely opaque. The blackbody radiation from earth’s surface is absorbed or scattered by the atmosphere. Though some radiation escapes into space, it is the radiation absorbed and subsequently emitted by atmospheric gases. It is this spectral selectivity of the atmosphere that is responsible for the planetary greenhouse effect.
The behavior of a common household lightbulb has a spectrum overlapping the blackbody spectra of the sun and the earth. A portion of the photons emitted by a tungsten light bulb filament at 3000K lie in the visible spectrum. However, the majority of the photonic energy is associated with longer wavelengths and will transfer heat to the environment, as can be deduced empirically by observing a household incandescent lightbulb. Whenever EM radiation is emitted and then absorbed, heat is transferred. This principle is used in microwave ovens, laser cutting, and RF hair removal.
Other heat transfer mechanisms
* Latent heat: Transfer of heat through a physical change in the medium such as water-to-ice or water-to-steam involves significant energy and is exploited in many ways: steam engine, refrigerator etc. (see latent heat of fusion)
* Heat pipe: Using latent heat and capillary action to move heat, it can carry many times as much heat as a similar sized copper rod. Originally invented for use in satellites, they are starting to have applications in personal computers."