ULTRASOUND HEATING IN PE WITH EXTERNAL TEMPERATURE MONITORING
ABSTRACT
This test series is continuation for the earlier tests with urethral temperature probe.
The temperature management has raised a lot of open questions, whether or not, the external temperature should correlate with the urethral temperature.
This series of tests was run to evaluate the urethral temperature development the heating sessions being steered by monitoring the external temperature.
METHODS
Earlier has been discovered that the Ultrasound heating with 1 Mhz source is most effectively produced with a backing medium having similar acoustic features as the heated tissue.
Penis being thinner than the half depth of the ultrasound it is crucial that there is a soundwave continuation beyond the opposite side to transducer, the beam not reflected against the source at the skin to air boundary. the soundwaves propagating more freely through the boundary.
This has been utilized by placing thermocouple wiring for temperature management into junction of penis and the thigh of the carrier. Coupled with the ultrasound conducting gel ,the premise is the coupling being understood as a uniform soft tissue medium.
Two measuring points between the thigh and the penis and another two thermocouples inside the urethra.
Two pieces of 2-channel digital thermometer were used to monitor the temperature.
The readings were captured by camera on captive mode in 5 seconds interval, therefor gathering four measuring datapoints every 5 seconds.
Data was processed through Excel and data analyses and graphs were produced.
The margin of error for the temperature readings is set by the declaration of the thermometer manufacturer to be (±0,3 %+1 °C ).
As a ultrasound equipment was used two (2) units of 1MHz 1.6w/cm^2 transducers having BNR 5:1 and ERA 4.0 cm^2 (US PRO 2000 2nd Edition), used simultaneously as a dual transducer setup.
TEMPERATURE CONTROL 1
The first dataset was performed in using the established method of placing the shaft against skin of the thigh, penis kept in tension with noose style hanger made of reeling clamp and elastic band.
First run was made primarily reading the urethral temperatures for the safety reasons and secondarily comparing the penis to leg junction temperatures.
Temperature was ramp up during the first 10 minutes and continued for another 10 minutes as the temperature has a trend to be more stabilized at this stage.
RESULTS 1
The data was promising as the urethral and external temperatures showed cohesion at high rate.
The data sets of internal and external temperatures show correlation coefficient of 0,80 which is highly correlating results. For the proximal probe stuck 16 cm deep in the urethra, in similar location amounted skin temperature control follows the internal slope nicely (graph 1, Temperature Control 1)
As well as does distally set pairs (graph 2, Temperature Control 1)
The mean temperature of the proximal and distal portions of the shaft settles at the 40.3°C and 39.8°C respectively for the latter 10 minutes stable temperature stage of the set. (Table1 1)
This set included the temperature decay ramp as well, the heating stopped at 21 minutes point.
(graph 3, Temperature Control 1)
TEMPERATURE CONTROL 2
The second dataset was captured in using the same setup but this time the run was made almost completely reading the skin temperatures only, at the penis to limb junction during the set.
Temperature was again ramp up during the first 10 minutes and continued for another 10 minutes as the temperature has a trend to be more stabilized at this stage.
RESULTS 2
The data was similar showing identical cohesion at high rate. (graph 4, Temperature Control 2 and graph 5, Temperature Control 2)
The data sets of internal and external temperatures again show correlation coefficient of 0,80 which is highly correlating results.
Everything seen in the first run has been confirmed in the second even being controlled only by external temperature.
The mean temperature of the proximal and distal portions of the shaft settles at the 40.2°C and 39.3°C respectively for the latter 10 minutes stable temperature stage of the set. (Table 2).
The human body natural, coded in, thermoregulatory system kicks in at the 15 minutes point.
(graph 6, Temperature Control 2)
It is easy to see temperatures starting to decrease once the blood flow has been accelerated enough, human body has the capability to try to save it from the abuse at least if we not putting excessive amounts of energy in the tissues. This is the time bracket where some would start to think upping the intensity once again. Unfortunately, or should we say fortunately with the used equipment we don´t have that choice available.
TEMPERATURE CONTROL 3
After the second run it was time to think how to intervene the cooling of the great natural cooler.
Using loose silicon cockring at the base of the shaft the superficial blood flow was restricted for a certain amount.
At first it showed promising but after only few minutes it is assumed the diastolic pressure due the accelerated flow override the pressure the silicon ring provided, and the cooling effect was even greater than before. With a very loosely fit clamp the temperature rose 1-2 degrees immediately and was rather easy to maintain at the +40°C level. Having the skin temperature at 39 -40°C the inner temperature following the outer temperature was a little bit higher.
This was the premise of the third run. Using blood flow restriction by a medium size cable clamp with a 5mm thick adhesive EDPM rubber lining inside on flaccid penis.
Running the test similarly to set 2 reading the skin temperature and steering the event controlled by the readings.
RESULTS 3
The heat raise was faster, temperature reaching target at 6-7 minutes already and staying easily managed at target zone. Towards the end it was obvious once again anatomic thermoregulatory effect stepping in charge. (graph 7, Temperature Control 3 and graph 8, Temperature Control 3)
The temperature started to decrease and if there only would be some room for tightening the clamp it should be managed. Clamp was not tight enough not restricting the flow at the latter part of the run.
Anyways as the temperature raises up sooner the effective time under therapeutic heat is easily produced despite the decreasing trend.
More tests will be needed to establish the technique for using tightening the clamp at the 15 minutes point more than was able to do in this run.
The mean temperature of the proximal and distal portions of the shaft settles at the 40.9°C and 39.7°C respectively for the latter 10 minutes stable temperature stage of the set. (Table 3).
Using total sum of points for the mean temperature seen in graph10, temperature control 3.
The correlation coefficient of 0,88 showing the skin temperature following the internal temperature at high degree.
No signs of oxygen deprivation or any change in skin coloring were seen. The superficial veins inflated similarly to not restricted flow situation. The penis felt and showed healthy during and after. Normal high rate EQ the following morning and day as usual.
CONCLUSIONS
The established method of heating the shaft with ultrasound being stretched OTL provide the possibility to use the external temperature monitoring. This will allow the user not only effectively but at higher level of safety.
Keeping the penis to thigh junction at 39-40 °C range, it is assumed that user can keep the internal temperature at therapeutic level and still within safety limits.
The overall correlation coefficient of 0,82 over total more than 3500 temperature measurement digits suggest a high correlation between outer and inner temperature in this kind of heating setup.
DISCUSSION
The biggest limitation in this study was the robust hanger attachment, preventing the firm contact between the distal shaft, and the top of the thigh at times. It is mostly seen in the in the temperature control 3 where the distal temperatures fail to reach the potential provided by the blood flow restriction.
(graph9, Temperature control 3).
Further test will be performed in the future with better contact and clamp able to be tightened more.
Another aspect to take into consideration is the positioning of the shaft. This series of tests was performed having the ventral /lateral side of the shaft in contact with the skin on the top of the limb.
This test series was performed with 1 MHz only, but it can be assumed 3MHz showing similar outcome.